

LABORATORY FACILITIES ASSOCIATED WITH RADON MEASUREMENTS AT THE NUCLEAR ENG. LABORATORY OF NTUA

ERRICCA-2 Kick-off Meeting 25-26 February, 2002, BRE-UK, London D.J.Karangelos, P.K.Rouni, N.P.Petropoulos, M.J.Anagmostakis, E.P.Hinis and S.E.Simopoulos, NTUA, Greece

THE NUCLEAR ENGINEERING LABORATORY - NTUA

CONTENTS

• NTUA Radon Chambers:

- Radon exhalation measurements
- Radon instrument calibrations
- Material tests
- Other radon exhalation measurement techniques and relevant instrumentation.
- Radon in air, water and soil measurement techniques and instrumentation.
- Research activities, industrial collaborations and recent publications

THE NTUA RADON CHAMBERS

RADON CHAMBERS (I)

Radon Chambers enable controlled environment in terms of temperature, humidity, air-exchange rate, radon concentration, particle concentration, aerosol size distribution, radon progeny concentration etc, thus providing a tool for conducting thorough experimental studies on radon and radon progeny.

RADON CHAMBERS (II)

Radon Chamber experiments include:

• radon exhalation measurements,

• instruments check and calibrations,

- materials tests,
- studies on radon progeny behavior,

 attachment processes to aerosol particles Most of such experiments are Chamber volume depended

THE NTUA RADON CHAMBERS

Radon chamber 1.8 m³
Radon chamber 8.5 m³

- Designed and constructed in Greece by the NTUA Nuclear Engineering Laboratory, made of stainless steel, air-tight and radon-tight.
- Computer controlled environmental conditions (Temperature 12-45 °C, Humidity 15–95%).

THE 1.8m³ RADON CHAMBER

THE 8.5m³ RADON CHAMBER

THE 8.5m³ RADON CHAMBER

ENVIRONMENTAL MONITORING IN THE RADON CHAMBERS

Thermometers
Thermocouples
Hair Hygrometers
Relative Humidity Transducers
Pressure Transducers

ENVIRONMENTAL MONITORING AND CONTROL OF THE RADON CHAMBERS

RADON CONCENTRATION ESTABLISHMENT

Two Certified dry ²²⁶Ra radon sources (100% emanating power) • PYLON 102.8 kBq • CZECH METROLOGICAL INSTITUTE 274.3 kBq radon is introduced in the chambers using in-line external circulation and internal circulation

CZECH SOURCE IN-LINE ERECA-2 CIRCULATION CONTAINER

PIPING DETAIL

RADON CONCENTRATION MONITORING (I)

<u>In-situ</u> continuous Radon progeny concentration measurements, using NaI detectors placed inside the chambers. • Grab sampling, using controlled flow-rate, of a small portion 2 - 10% of chamber gas through filters, which are then analysed for Radon progeny using alpha or/and gamma spectroscopy.

RADON CONCENTRATION MONITORING (II)

Continuous or quasi-continuous Radon concentration measurements, using active instrumentation, placed either inside the chambers or in-line connected to them.

QUASI-CONTINUOUS RADON CONCENTRATION MONITORING

RADON EXHALATION MEASUREMENTS

RADON EXHALATION MEASUREMENT PRINCIPLE

- Enclose the sample / structural module in a container, or
- ✓ attach tightly a container on the structural module surface,

and

follow up the radon concentration growth inside the container

FOLLOW UP THE RADON CONCENTRATION GROWTH INSIDE THE CONTAINER

MATHEMATICALLY EXPRESSED...

$\mathbf{C} = \mathbf{C}_{o} \exp(-\lambda t) + \mathbf{E} [1 - \exp(-\lambda t)] (\lambda \mathbf{V})^{-1} \quad (1)$

- *C* Radon concentration (Bqm⁻³) in the container at growth time t(h)
- E exhalation rate (Bqh⁻¹)
- λ Radon decay constant (h⁻¹)
- C_o initial Radon concentration (Bqm⁻³) in the container at time t(0h) i.e. the background

...OR FOR SHORT GROWTH TIME

Equation (1)

is approximated then as:

$C = E(\lambda V)^{-1}$

RADON EXHALATION MEASUREMENTS

From raws and building materials
From industrial by-products
From structures
and also
From the ground surface

STRUCTURAL MODULE SPECIMENS

F

THE 8.5 m³ RADON CHAMBER

OTHER USES OF THE RADON CHAMBERS

ERRICCA-2

RADON CHAMBERS USES

Study of:

- the effectiveness of remediation techniques, such as : *Epoxy sealants, Membranes, and Concrete* as radon barriers
- Aging of structures and membranes.
- Effects of environmental conditions (temperature, pressure) on radon exhalation rate.
- Instruments calibrations and checks

RADON INSTRUMENTATION CALIBRATION

1-2

Radon in the Living Environment, 19-23 April 1999, Athens, Greece

128

THE EFFECT OF HUMIDITY ON THE RADON COUNTING EFFICIENCY OF INTEGRATED INSTRUMENTS

N.P.Petropoulos, E.P.Hinis, S.E.Simopoulos

Nuclear Engineering Section, Mechanical Engineering Dept. National Technical University of Athens, 15780, Greece

ABSTRACT

Radon in the Living Environment, 19-23 April 1999, Athens, Greece

130

BUILDING MATERIALS RADON EXHALATION RATE: ERRICCA INTERCOMPARISON EXERCISE RESULTS

N.P. Petropoulos, M.J. Anagnostakis, and S.E. Simopoulos

Nuclear Engineering Section, Mechanical Engineering Dept. National Technical University of Athens, 15780 Athens, Greece Corresponding Author: N.P. Petropoulos, tel. +301 7722939, fax. +301 7722914,

RADON EXHALATION MEASUREMENTS USING SMALL CHAMBERS

RADON EXHALATION MEASUREMENTS USING SMALL CHAMBERS

• Cheap solutions

- Useful when: small quantities of the materials are available, or for existing constructions.
- Control and monitoring of environmental parameters is needed.
- The instrument is outside the chamber (radon leaks, detector chamber size effect, instrument continuously connected to the chamber.
- Fast results, not so accurate.

ERRICCA-2

COMPARISON OF RADON EXHALATION RATE MEASUREMENTS FROM LIGNITE (~300Bq/kg ²²⁶Ra)

EXHALATION RATE MEASUREMENTS FROM LIGNITE (~300Bq/kg ²²⁶Ra)

Chamber	Sample Quantity	Duration	Exhalation rate $(mPa/kar coo)$	Standard Error
	(gr)	(11)	(IIIDq/kgi/sec)	
MRH	8120	120	0.22	0.008
$(1.8m^3)$				
(11.65 lt)	300	10	0.20	0.012
(5.4 lt)	250	3	0.2	0.04

OTHER RADON MEASUREMENTS

RADON MEASUREMENTS

Mines • Underground facilities and tunneling Waterworks • Building materials industry Industrial Processes with NORM and **TENORM** materials (Phosphate Industry, Power Plants)

RADON MEASUREMENTS IN AND AROUND INDUSTRIAL INSTALLATIONS

RADON MEASUREMENTS IN THE SOIL

Radon is soil gas
Radon exhalation rate from ground surface

in

Mines
Industrial by products deposition fields (fly-ash, slug)

RADON IS SOIL GAS

RADON EXHALATION MEASUREMENTS FROM THE SOIL

ERRICCA-2

Radioenvironmental survey of the Megalopolis lignite field basin

P.K. Rouni, N.P. Petropoulos, M.J. Anagnostakis, E.P. Hinis*, S.E. Simopoulos

Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, 157 80 Athens, Greece

RADON MEASUREMENTS IN FLY-ASH DEPOSITION FIELDS

Measurements in discarded fly-ash deposition fields

Location	Description	Gamma- ray dose- rate (nSv/h)	²²² Rn exhalation rate (mBqs ⁻¹ m ⁻²)	²²² Rn in soil gas (kBqm ⁻³)	²²² Rn air concentration (Bqm ⁻³)
Deposition field 1	Restored in mid 70's, planted	140	18 ± 18	13 ± 5	26 ± 18
Deposition field 2	Restored in mid 80's, planted	300	24 ± 50	42 ± 3	42 ± 24
Deposition field 3	Not restored, active (exhausted lignite mine)	450	2 ± 0.1	17 ± 1	19 ± 12
Nearby reference point	Undisturbed field	300	180 ± 120	600 ±100	45 ± 28

RADON IN WATER MEASUREMENTS

Various analysis techniques
Caution in the sampling protocol
Preparation of secondary standards
Difficulties in Intercomparison
Remediation techniques in waterworks

2nd AQUA-KIT FOR RADON IN WATER

THE TWO RADON IN WATER TECHNIQUES

 1st Aqua-kit may be used for continuous water flow.

• 2nd Aqua-kit needs smaller water volumes.

 1st Aqua-kit needs calibration and calibration check (membrane).

• Measurement time is ~40min for both techniques.

NATURAL RADIONUCLIDES DETERMENATION IN BUILDING MATERIALS

GAMMA SPECTROSCOPIC DETERMINATION OF NATURAL RADIONUCLIDES

- Determination of ²²⁶Ra, ²³²Th, ⁴⁰K in building materials.
- Calculation of the radiation performance index for building materials.
- Determination of other natural radionuclides

NATURAL RADIOACTIVITY CONTENT AND RADON EXHALATION RATES OF GREEK BUILDING MATERIALS

A. Louizi,¹ C. Proukakis,¹ N. P. Petropoulos² and S. E. Simopoulos²

 ¹ Department of Medical Physics, School of Medicine, Athens University, 75 Mikzas Asias Stz Goudi, 11527 Athens, Greece
 ² Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, 15780 Athens, Greece

INDOOR AIR

An Integrated Approach

Edited by

L. MORAWSKA Queensland University of Technology, Brisbane, Australia

N. D. BOFINGER. Clean Air Society of Australia and New Zealand Queensland University of Technology, Brisbane, Australia

M. MARONI International Society of Indoor Air Quality, University of Milano, Italy

ELSEVIER Journal of Environmental Radioactivity ** (2001) ***-

www.elsevier.com/locate/jenvrad

Photon attenuation, natural radioactivity content and radon exhalation rate of building materials

N.P. Petropoulos, M.J. Anagnostakis*, S.E. Simopoulos

Nuclear Engineering Section, Mechanical Engineering Dept., National Technical University of Athens, 15780 Athens, Greece

Received 3 January 2001; received in revised form 24 June 2001; accepted 3 July 2001

CURRENT RADON RELATED COLLABORATION OF NES-NTUA WITH THE INDUSTRY

- Determination of the natural radioactivity and radon exhalation rate from domestic and imported zeoliths and perlite.
- Dependence of the fly-ash natural radioactivity and the radon exhalation-rate, from the fly-ash grain size and the sampling point inside lignite burning power plants.
- Determination of the natural radioactivity and radon exhalation rate from biofuel ashes.
- Determination of the fly-ash content in the various fractions of cement, during the cement production process.